
MongoDB Cheat Sheet
By Web Dev Simplified https://courses.webdevsimplified.com

Terminology

Database A container for collections. This is the same as a database in SQL and
usually each project will have its own database full of different collections.

Collection
A grouping of documents inside of a database. This is the same as a table in
SQL and usually each type of data (users, posts, products) will have its own
collection.

Document
A record inside of a collection. This is the same as a row in SQL and usually
there will be one document per object in the collection. A document is also
essentially just a JSON object.

Field

A key value pair within a document. This is the same as a column in SQL.
Each document will have some number of fields that contain information
such as name, address, hobbies, etc. An important difference between SQL
and MongoDB is that a field can contain values such as JSON objects, and
arrays instead of just strings, number, booleans, etc.

Basic Commands

mongosh
Open a connection to your local MongoDB instance. All other commands
will be run within this mongosh connection.

show dbs Show all databases in the current MongoDB instance

use <dbname>
use myDatabase

Switch to the database provided by dbname
Switch to myDatabase

db Show current database name

cls Clear the terminal screen

show collections Show all collections in the current database

db.dropDatabase() Delete the current database

exit Exit the mongosh session

Create
Each of these commands is run on a specific collection
db.<collectionName>.<command>

insertOne
db.users.insertOne({ name: “Kyle” })

Create a new document inside the specified collection
Add a new document with the name of Kyle into the users collection

insertMany
db.users.insertMany([{ age: 26 }, { age: 20 }])

Create multi new documents inside a specific collection
Add two new documents with the age of 26 and 20 into the users collection

Read
Each of these commands is run on a specific collection
db.<collectionName>.<command>

find
db.users.find()

Get all documents
Get all users

find(<filterObject>)
db.users.find({ name: “Kyle” })
db.users.find({ “address.steet”: “123 Main St” })

Find all documents that match the filter object
Get all users with the name Kyle
Get all users whose adress field has a street field with the value 123 Main St

find(<filterObject>, <selectObject>)
db.users.find({ name: “Kyle” }, { name: 1, age: 1 })
db.users.find({}, { age: 0 })

Find all documents that match the filter object but only
return the field specified in the select object
Get all users with the name Kyle but only return their name, age, and _id
Get all users and return all columns except for age

findOne
db.users.findOne({ name: “Kyle” })

The same as find, but only return the first document that
matches the filter object
Get the first user with the name Kyle

countDocuments
db.users.countDocuments({ name: “Kyle” })

Return the count of the documents that match the filter
object passed to it
Get the number of users with the name Kyle

Update
Each of these commands is run on a specific collection
db.<collectionName>.<command>

updateOne
db.users.updateOne({ age: 20 }, { $set: { age: 21 } })

Update the first document that matches the filter object
with the data passed into the second parameter which is the
update object
Update the first user with an age of 20 to the age of 21

updateMany
db.users.updateMany({ age: 12 }, { $inc: { age: 3 } })

Update all documents that matches the filter object with the
data passed into the second parameter which is the update
object
Update all users with an age of 12 by add 3 to their age

replaceOne
db.users.replaceOne({ age: 12 }, { age: 13 })

Replace the first document that matches the filter object
with the exact object passed as the second parameter. This
will completely overwrite the entire object and not just
update individual fields.
Replace the first user with an age of 12 with an object that has the age of 13 as
its only field

Delete
Each of these commands is run on a specific collection
db.<collectionName>.<command>

deleteOne
db.users.deleteOne({ age: 20 })

Delete the first document that matches the filter object
Delete the first user with an age of 20

deleteMany
db.users.deleteMany({ age: 12 })

Delete all documents that matches the filter object
Delete all users with an age of 12

Complex Filter Object
Any combination of the below can be use inside a filter object to make complex queries

$eq
db.users.find({ name: { $eq: “Kyle” } })

Check for equality
Get all users with the name Kyle

$ne
db.users.find({ name: { $ne: “Kyle” } })

Check for not equal
Get all users with a name other than Kyle

$gt / $gte
db.users.find({ age: { $gt: 12 } })
db.users.find({ age: { $gte: 15 } })

Check for greater than and greater than or equal to
Get all users with an age greater than 12
Get all users with an age greater than or equal to 15

$lt / $lte
db.users.find({ age: { $lt: 12 } })
db.users.find({ age: { $lte: 15 } })

Check for less than and less than or equal to
Get all users with an age less than 12
Get all users with an age less than or equal to 15

$in
db.users.find({ name: { $in: [“Kyle”, “Mike”] } })

Check if a value is one of many values
Get all users with a name of Kyle or Mike

$nin
db.users.find({ name: { $nin: [“Kyle”, “Mike”] } })

Check if a value is none of many values
Get all users that do not have the name Kyle or Mike

$and
db.users.find({ $and: [{ age: 12 }, { name: “Kyle” }] })
db.users.find({ age: 12, name: “Kyle” })

Check that multiple conditions are all true
Get all users that have an age of 12 and the name Kyle
This is an alternative way to do the same thing. Generally you do not need $and.

$or
db.users.find({ $or: [{ age: 12 }, { name: “Kyle” }] })

Check that one of multiple conditions is true
Get all users with a name of Kyle or an age of 12

$not
db.users.find({ name: { $not: { $eq: “Kyle” } } })

Negate the filter inside of $not
Get all users with a name other than Kyle

$exists
db.users.find({ name: { $exists: true } })

Check if a field exists
Get all users that have a name field

$expr
db.users.find({ $expr: { $gt: [“$balance”, “$debt”] } })

Do comparisons between different fields
Get all users that have a balance that is greater than their debt

Complex Update Object
Any combination of the below can be use inside an update object to make complex updates

$set
db.users.updateOne({ age: 12 }, { $set: { name: “Hi” } })

Update only the fields passed to $set. This will not affect
any fields not passed to $set.
Update the name of the first user with the age of 12 to the value Hi

$inc
db.users.updateOne({ age: 12 }, { $inc: { age: 2 } })

Increment the value of the field by the amount given
Add 2 to the age of the first user with the age of 12

$rename
db.users.updateMany({}, { $rename: { age: “years” } })

Rename a field
Rename the field age to years for all users

$unset
db.users.updateOne({ age: 12 }, { $unset: { age: “” } })

Remove a field
Remove the age field from the first user with an age of 12

$push
db.users.updateMany({}, { $push: { friends: “John” } })

Add a value to an array field
Add John to the friends array for all users

$pull
db.users.updateMany({}, { $pull: { friends: “Mike” } })

Remove a value from an array field
Remove Mike from the friends array for all users

Read Modifiers
Any combination of the below can be added to the end of any read operation

sort
db.users.find().sort({ name: 1, age: -1 })

Sort the results of a find by the given fields
Get all users sorted by name in alphabetical order and then if any names are the
same sort by age in reverse order

limit
db.users.find().limit(2)

Only return a set number of documents
Only return the first 2 users

skip
db.users.find().skip(4)

Skip a set number of documents from the beginning
Skip the first 4 users when returning results. This is great for pagination when
combined with limit.

